Improved Model of Proton Pump Crystal Structure Obtained by Interactive Molecular Dynamics Flexible Fitting Expands the Mechanistic Model for Proton Translocation in P-Type ATPases
نویسندگان
چکیده
The plasma membrane H+-ATPase is a proton pump of the P-type ATPase family and essential in plants and fungi. It extrudes protons to regulate pH and maintains a strong proton-motive force that energizes e.g., secondary uptake of nutrients. The only crystal structure of a H+-ATPase (AHA2 from Arabidopsis thaliana) was reported in 2007. Here, we present an improved atomic model of AHA2, obtained by a combination of model rebuilding through interactive molecular dynamics flexible fitting (iMDFF) and structural refinement based on the original data, but using up-to-date refinement methods. More detailed map features prompted local corrections of the transmembrane domain, in particular rearrangement of transmembrane helices 7 and 8, and the cytoplasmic N- and P-domains, and the new model shows improved overall quality and reliability scores. The AHA2 structure shows similarity to the Ca2+-ATPase E1 state, and provides a valuable starting point model for structural and functional analysis of proton transport mechanism of P-type H+-ATPases. Specifically, Asp684 protonation associated with phosphorylation and occlusion of the E1P state may result from hydrogen bond interaction with Asn106. A subsequent deprotonation associated with extracellular release in the E2P state may result from an internal salt bridge formation to an Arg655 residue, which in the present E1 state is stabilized in a solvated pocket. A release mechanism based on an in-built counter-cation was also later proposed for Zn2+-ATPase, for which structures have been determined in Zn2+ released E2P-like states with the salt bridge interaction formed.
منابع مشابه
Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights
Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ...
متن کاملMechanistic stoichiometry of proton translocation by cytochrome cbb3.
Cytochrome cbb(3) belongs to the superfamily of respiratory heme-copper oxidases that couple the reduction of molecular oxygen to proton translocation across the bacterial or mitochondrial membrane. The cbb(3)-type enzymes are found only in bacteria, and are both structurally and functionally the most distant from their mitochondrial counterparts. The mechanistic H(+)/e(-) stoichiometry of prot...
متن کاملCalculating charge radius for proton with hyper central interacting color potential
An improved M.I.T. bag model with hyper central interaction is used to calculate the charge radius for proton containing u and d quarks. We present a theoretical approach to the internal structure of three-body hyper central interacting quarks in a proton, in which we take proton as a bag. We discuss a few of results obtained using a six-dimension potential, which is attractive for small separa...
متن کاملThe mechanochemistry of V-ATPase proton pumps.
The vacuolar H(+)-ATPases (V-ATPases) are a universal class of proton pumps that are structurally similar to the F-ATPases. Both protein families are characterized by a membrane-bound segment (V(o), F(o)) responsible for the translocation of protons, and a soluble portion, (V(1), F(1)), which supplies the energy for translocation by hydrolyzing ATP. Here we present a mechanochemical model for t...
متن کاملProton transfer reactions across bacteriorhodopsin and along the membrane.
Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical technique...
متن کامل